Posts

Showing posts with the label homogenizer

Valve Type VS. Microfluidic High Pressure Homogenizer, Which is Better For Your Application?

Image
Valve-Type High-Pressure Homogenizer vs. Microfluidic Homogenizer: Which Is Better for Your Application? High-pressure homogenization is essential across various industries, including pharmaceuticals, biotechnology, and food processing, where particle size reduction and stable emulsion formation are critical. Among the technologies available, valve-type high-pressure homogenizers and microfluidic homogenizers are two popular options, each offering unique advantages. In this article, we will compare these two technologies to help you determine which is best suited for your specific application. Understanding Microfluidic Homogenizers Microfluidic homogenizers are high-pressure systems that utilize fixed geometry microchannels instead of valves to create a consistent shear rate on liquids. This innovative design allows for precise control of fluid dynamics, leading to effective particle size reduction while minimizing energy loss as heat. Microfluidic homogenizers are ideal for applicati...

The Advantages of High-Pressure Homogenization for Efficient E. coli Cell Disruption

Image
High-pressure homogenization (HPH) provides significant advantages for the efficient disruption of E. coli cells, a critical process in biotechnology and microbiology. This method involves applying intense pressure to cell suspensions, forcing them through a narrow gap or valve. The resulting high shear forces, turbulence, and cavitation effectively rupture the cells, leading to thorough cell lysis. One of the primary benefits of HPH is its remarkable efficiency in achieving uniform and consistent cell disruption. This uniformity is crucial for optimizing the extraction of intracellular products such as recombinant proteins, enzymes, and nucleic acids. By ensuring complete cell lysis, HPH maximizes the yield of these valuable biomolecules, which is essential for both research applications and industrial-scale production. Another significant advantage of HPH is its ability to preserve the integrity of sensitive molecules. The process is designed to minimize heat generation, reducing th...

Microjet NanoGenizer and Micromix MixGenizer: the next generation homogenizer for nanomaterials

Image
Microjet technology is a method for producing nanomaterials in high-pressure fluid jets, enabling the scalable and efficient production of nanomaterials. In the vast field of manufacturing, an 'industrial mother machine' refers to equipment crucial for producing other machines or products. Nanomaterials, key raw materials for various functional products, find broad applications, and the NanoGenizer Microjet Homogenizer is one such device widely used in the preparation of nano-drug formulations and various emerging nanomaterials, making it a leading industrial mother machine for next-generation nanomaterials. High-pressure Micromix technology is an extension of M icrojet technology, where the Micromix   MixGenizer  High-Pressure Homogenizer generates nanomaterials by precisely controlling multiphase mixing. These two devices play fundamental and crucial roles in the production of advanced nanomaterials, holding significant importance in driving the entire field of nanotechnolog...

Using High-Pressure Microfluidic Homogenizers for Micro and Nano Emulsions

Image
High-pressure homogenization, especially in the context of creating microemulsions and nanoemulsions, stands as a pioneering innovation that transcends multiple industries. These ultra-fine emulsions, characterized by droplet sizes typically below 100 nanometers, offer a myriad of advantages. In this article, we will explore the unique benefits of harnessing high-pressure microfluidic homogenizers for the formulation of microemulsions and nanoemulsions.   Advantages of High-Pressure Microfluidic Homogenizers   High-pressure microfluidic homogenizers deliver a range of distinctive advantages when applied to the production of microemulsions and nanoemulsions:   Precision in Particle Size Control:   These homogenizers offer meticulous control over particle size reduction, ensuring droplets measure at or below 100 nanometers.   Consistent Dispersion : High-pressure microfluidic homogenizers ensure even dispersion, resulting in emulsions of remarkable stability. ...

3 Questions to Ask While Looking for a Liposome Extrusion Option

Image
Three questions to ask when looking for a liposome extrusion option   There are three questions to ask when you are choosing a liposome extrusion option. First, what pore size do you need? While a solo homogenizer reaches a liposome size of 20-30nm, any option with extrusion allows for more choice. Second, what power types do you have access to? The jacketed liposome extruders allow for gas power. An electric option is available if you go for a high-pressure homogenizer with or without an extruder. And manual options are available in the HandExtruder and HandGenizer.   Third, what scale of sample do you need to process? Genizer makes extrusion options from 1 mL to manufacturing scale. There are advantages coming from the various options as well to help you make your choice! R each out at  www.genizer.com  for more information.

Types of High Pressure Homogenizers: An Overview

Image
How are High Pressure Homogenizers are classified?   The Classification of High Pressure Homogenizers. High pressure homogenizers can be categorized based on various perspectives, including the power source, pressurization principle, and the design and structure of interaction chambers.   High pressure homogenizers: Classification   1.  b y energy source   Electric   Electric homogenizers are powered by an electric motor. This category of homogenizer can be further subdivided into two types: direct-drive and intensifier.     Electric high pressure homogenizer with intensifier Direct-drive type:  The motor drives the crankshaft to move the plunger back and forth, directly pressurizing the material. Multiple plungers in the crankshaft work together to produce constant pressure and a high flow rate; large quantities of materials are required to produce the constant pressure. To drive the crankshaft, the motor requires a multi-stage gear reductio...